C++ Teasers

Frank B. Brokken
University of Groningen

December 2013 - Octobr 2023

1 About the teasers

If you're interested in C++, then this document may contains some interesting
(and maybe teasing) questions.

Every now and then I may update the questions.

Most of these should be easy to answer, especially if you've attended my C++
courses. Can’t attend them? I may have a tailored course for you. Just contact
me if you're interested.

2 Questions

e When to define enums? Should they be strongly typed? When should
they be? When is defining a stronly typed enum not really necessary?

e Why use ++idx rather than idx++ in, e.g.,

for (size_t idx = 0; idx != end; ++idx)

e Why prefer != over < in for-stmnt conditions?

e How can you be sure that you're not falling in the off-by-one trap when
using for-stmnts? Both in the incrementing and decrementing case?

e What’s your philosophy for using a for-statement? And a while-statement?
(or don’t you have one?)

e When do you prefer an if-stmnt over a switch-stmnt? And v.v.?
e Do you ever prefer neither? If so, what’s your alternative?

e What is your philosophy for defining classes?

How do you implement (rather than design) your class members? What
is your software design philosophy here?

new Type[n] calls Type’s default constructor. What do you do if you
need to define n Type objects using a non-default constructor?

The intent is to use placement new to enlarge arrays of Object objects.
Assume initially you do ptr = new Object[1]. Since placement new is
used to create a larger array, we use operator delete ptr to return the
previously allocated array just before assigning ptr to the enlarged array.

Why does the program (usually) crash with a run-time error complaining
that ptr contains is an invalid pointer?

Do you have any good arguments for using placement new?

Why won’t the compiler allow you to pass a Type ** argument to a func-
tion defining a Type const ** parameter?

Why should you put ’const’ behind the things that are constant, and not
before?

How can you provide context to signal handlers?

What is your approach to using shared memory? Can you do so without
violating principles of designing reusable software?

How do you distinguish Ivalue and rvalue uses of the index operator?

How to use the copy generic algorithm and std::istream_iterators
to fill a std::vector<std::string> with the lines, rather than blank-
delimited words from an std::istream?

Why is it a bad idea to use ’'virtual’ for members of derived classes if their
base classes also specified ’virtual’? What should you do instead?

Did you ever have to implement a swap-member? How do you implement
a swap member if your class features reference members?

When do you consider adding members having rvalue reference parameters
to your classes?

Why is inheritance used?
Is inheritance ever useful without polymorphism?
What is a polymorphic base class? Why would you use one?

What are VTables and where are they? Can you organize your software
in such a way that you have one answer that’s always correct?

Why do objects of polymorphic classes occupy more memory than objects
of non-polymorphic classes?

What is static polymorphism? Do you have an example?

What’s so interesting about rvalue reference parameters in function tem-
plates?

How do you design a const_iterator which is derived from a std: : iterator
created as a std: :input_iterator_tag, but which also allows you to use
a matching std: :reverse_iterator?

Why don’t classes derived from Base have to be polymorphic when storing
newly allocated objects of such classes in a std: :shared_ptr<Base> or
std: :unique_ptr<Base> object?

Could you design and implement a class template expecting a typename
Base, accepting a pointer to any class that is derived from Base (either at
construction-time or using a reset member, just like std: : shared_ptr<Base>
or std: :unique_ptr<Base>), properly deleting the Derived class object
when the object of your class goes out of scope? (Your class may not use

or rely on polymorphism either).

Why isn’t partial specialization available for function templates?

Assume you have a function template

template <typename Tp>
void fun(Tp tp)
{

std::cout << "hi\n";

}

You can use this in a program:

int main(int argc, char **argv)
{

fun(argc) ;

fun(argv[0]);

What modification do you propose to ensure that you cannot create this
program anymore because fun cannot be instantiated for plain int types?
(you may not use template meta-programming techniques.)

