
C++ Teasers

Frank B. Brokken
University of Groningen

December 2013 - Octobr 2023

1 About the teasers

If you’re interested in C++, then this document may contains some interesting
(and maybe teasing) questions.

Every now and then I may update the questions.

Most of these should be easy to answer, especially if you’ve attended my C++
courses. Can’t attend them? I may have a tailored course for you. Just contact
me if you’re interested.

2 Questions

• When to define enums? Should they be strongly typed? When should
they be? When is defining a stronly typed enum not really necessary?

• Why use ++idx rather than idx++ in, e.g.,

for (size_t idx = 0; idx != end; ++idx)

...

• Why prefer != over < in for-stmnt conditions?

• How can you be sure that you’re not falling in the off-by-one trap when
using for-stmnts? Both in the incrementing and decrementing case?

• What’s your philosophy for using a for-statement? And a while-statement?
(or don’t you have one?)

• When do you prefer an if-stmnt over a switch-stmnt? And v.v.?

• Do you ever prefer neither? If so, what’s your alternative?

• What is your philosophy for defining classes?

1

• How do you implement (rather than design) your class members? What
is your software design philosophy here?

• new Type[n] calls Type’s default constructor. What do you do if you
need to define n Type objects using a non-default constructor?

• The intent is to use placement new to enlarge arrays of Object objects.
Assume initially you do ptr = new Object[1]. Since placement new is
used to create a larger array, we use operator delete ptr to return the
previously allocated array just before assigning ptr to the enlarged array.

Why does the program (usually) crash with a run-time error complaining
that ptr contains is an invalid pointer?

• Do you have any good arguments for using placement new?

• Why won’t the compiler allow you to pass a Type ∗∗ argument to a func-
tion defining a Type const ∗∗ parameter?

• Why should you put ’const’ behind the things that are constant, and not
before?

• How can you provide context to signal handlers?

• What is your approach to using shared memory? Can you do so without
violating principles of designing reusable software?

• How do you distinguish lvalue and rvalue uses of the index operator?

• How to use the copy generic algorithm and std::istream_iterators

to fill a std::vector<std::string> with the lines, rather than blank-
delimited words from an std::istream?

• Why is it a bad idea to use ’virtual’ for members of derived classes if their
base classes also specified ’virtual’? What should you do instead?

• Did you ever have to implement a swap-member? How do you implement
a swap member if your class features reference members?

• When do you consider adding members having rvalue reference parameters
to your classes?

• Why is inheritance used?

• Is inheritance ever useful without polymorphism?

• What is a polymorphic base class? Why would you use one?

• What are VTables and where are they? Can you organize your software
in such a way that you have one answer that’s always correct?

• Why do objects of polymorphic classes occupy more memory than objects
of non-polymorphic classes?

• What is static polymorphism? Do you have an example?

• What’s so interesting about rvalue reference parameters in function tem-
plates?

2

• How do you design a const_iteratorwhich is derived from a std::iterator
created as a std::input_iterator_tag, but which also allows you to use
a matching std::reverse_iterator?

• Why don’t classes derived from Base have to be polymorphic when storing
newly allocated objects of such classes in a std::shared_ptr<Base> or
std::unique_ptr<Base> object?

• Could you design and implement a class template expecting a typename

Base, accepting a pointer to any class that is derived from Base (either at
construction-time or using a resetmember, just like std::shared_ptr<Base>

or std::unique_ptr<Base>), properly deleting the Derived class object
when the object of your class goes out of scope? (Your class may not use
or rely on polymorphism either).

• Why isn’t partial specialization available for function templates?

• Assume you have a function template

template <typename Tp>

void fun(Tp tp)

{

std::cout << "hi\n";

}

You can use this in a program:

int main(int argc, char **argv)

{

fun(argc);

fun(argv[0]);

}

What modification do you propose to ensure that you cannot create this
program anymore because fun cannot be instantiated for plain int types?
(you may not use template meta-programming techniques.)

3

